1、一種概率分布。
2、正態(tài)分布是具有兩個(gè)參數(shù)μ和σ2的連續(xù)型隨機(jī)變量的分布,第一參數(shù)μ是服從正態(tài)分布的隨機(jī)變量的均值,第二個(gè)參數(shù)σ2是此隨機(jī)變量的方差,所以正態(tài)分布記作N(μ,σ2 )。
3、 服從正態(tài)分布的隨機(jī)變量的概率規(guī)律為取與μ鄰近的值的概率大 ,而取離μ越遠(yuǎn)的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。
(資料圖片)
4、正態(tài)分布的密度函數(shù)的特點(diǎn)是:關(guān)于μ對(duì)稱,在μ處達(dá)到最大值,在正(負(fù))無(wú)窮遠(yuǎn)處取值為0,在μ±σ處有拐點(diǎn)。
5、它的形狀是中間高兩邊低 ,圖像是一條位于x軸上方的鐘形曲線。
6、當(dāng)μ=0,σ2 =1時(shí),稱為標(biāo)準(zhǔn)正態(tài)分布,記為N(0,1)。
7、μ維隨機(jī)向量具有類似的概率規(guī)律時(shí),稱此隨機(jī)向量遵從多維正態(tài)分布。
8、多元正態(tài)分布有很好的性質(zhì),例如,多元正態(tài)分布的邊緣分布仍為正態(tài)分布,它經(jīng)任何線性變換得到的隨機(jī)向量仍為多維正態(tài)分布,特別它的線性組合為一元正態(tài)分布。
9、 正態(tài)分布最早由A.棣莫弗在求二項(xiàng)分布的漸近公式中得到。
10、C.F.高斯在研究測(cè)量誤差時(shí)從另一個(gè)角度導(dǎo)出了它。
11、P.S.拉普拉斯和高斯研究了它的性質(zhì)。
12、 生產(chǎn)與科學(xué)實(shí)驗(yàn)中很多隨機(jī)變量的概率分布都可以近似地用正態(tài)分布來(lái)描述。
13、例如,在生產(chǎn)條件不變的情況下,產(chǎn)品的強(qiáng)力、抗壓強(qiáng)度、口徑、長(zhǎng)度等指標(biāo);同一種生物體的身長(zhǎng)、體重等指標(biāo);同一種種子的重量;測(cè)量同一物體的誤差;彈著點(diǎn)沿某一方向的偏差;某個(gè)地區(qū)的年降水量;以及理想氣體分子的速度分量,等等。
14、一般來(lái)說(shuō),如果一個(gè)量是由許多微小的獨(dú)立隨機(jī)因素影響的結(jié)果,那么就可以認(rèn)為這個(gè)量具有正態(tài)分布(見(jiàn)中心極限定理)。
15、從理論上看,正態(tài)分布具有很多良好的性質(zhì) ,許多概率分布可以用它來(lái)近似;還有一些常用的概率分布是由它直接導(dǎo)出的,例如對(duì)數(shù)正態(tài)分布、t分布、F分布等。
本文分享完畢,希望對(duì)大家有所幫助。
標(biāo)簽: